
Scalar Product Equivalence

The dot/scalar product of two vectors a =
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 and b =
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 is defined to be

a.b ≡ |a||b| cos θ

where |a| denotes the magnitude (length) of the vector a and is calculated |a| =
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(similarly

for b) and θ is the angle between vectors a and b. This document is designed to demonstrate that the
above definition is consistent with the component form of the dot product
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 .
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 = axbx + ayby + azbz.

Proof

Consider the triangle OAB with θ = AÔB.
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. Therefore
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Applying the cosine rule to the triangle we have

|b− a|2 = |a|2 + |b|2 − 2|a||b| cos θ

so

cos θ =
|a|2 + |b|2 − |b− a|2
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Therefore starting from the definition of the scalar product we find

a.b ≡ |a||b| cos θ

= |a||b|
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= axbx + ayby + azbz.

As required.
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